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ABSTRACT 

We present steady solutions of high speed viscous flows over blunt bodies using a multidomain 

Chebyshev spectral collocation method. The region within the shock layer is divided into subdo- 

mains so that internal layers can be well-resolved. In the interiors of the subdomains, the solution 

is approximated by Chebyshev collocation. At interfaces between subdomains, the advective terms 

are upwinded and the viscous terms are treated by a penalty method. The method is applied to 

five flows the Mach number range 5-25 and Reynolds number range 2,000 - 83,000, based on nose 

radius. Results are compared to experimental data and to a finite difference result. 
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Introduction 

Spectral methods are now applied to a wide variety of fluid dynamics problems1. They are 

characterized by global, high order orthogonal polynomial approximations. For smooth enough solutions they 

give exponential order convergence. The high order approximation of the advective terms has low dissipation 

errors, which is important in viscous flow calculations. 

Compared to finite difference methods, fewer grid points are needed by spectral methods to obtain 

highly accurate solutions. As an example, Pruett and Streett2 compared the results of a Chebyshev method for 

the solution of the compressible boundary layer equations to that of a second order finite difference method. To 

compute the wall temperature for an adiabatic wall, they found that 77 points were required for the spectral 

method to obtain the same five digit accuracy for which the finite difference method required 400. 

On the negative side, the use of global polynomial approximations makes it difficult to solve problems 

with multiple length scales. These scales might be associated with the size of an aerodynamic body, the 

distance between shock waves, the size of entropy and vorticity layers, and the size of viscous boundary layers. 

A standard spectral collocation method would require a complex mapping and a large number of grid points to 

solve such problems. Refinement of the grid to resolve local features would have to be handled by the 

mappings. The resulting problem would be numerically very stiff. Very small time-steps and large numbers of 

iterations would be required to converge to steady-state. 

To ameliorate the difficulties of standard spectral methods, multidomain spectral methods have been 

developed to solve incompressible viscous (see Ref. 1 for a discussion) and, now, compressible3-7 flows. 

Multidomain methods still give the exponential error convergence characteristic of the spectral methods, but 

also allow for local refinement of the grid. 

In this paper, we apply to the solution of the steady blunt body problem a new multidomain Chebyshev 

collocation method developed for the solution of the compressible Navier-Stokes equations8. The important 

feature of the method is the treatment of the interfaces between subdomains. At a subdomain interface, the 

advective terms in the equations are treated by an upwind characteristic correction procedure developed for the 

inviscid Euler gas-dynamics equations.3 The viscous terms are approximated by a weighted average of the 



terms on either side plus a penalty term proportional to the jump in the viscous fluxes. The result is a method 

with communication limited to the passing of boundary data only. 

The method is applied to five examples. The first four examples are of sphere, cylinder and blunt 

cone geometries at Mach number 5.73 and 10.6. For these solutions, the surface pressure or the heat transfer are 

compared to experiments. The final problem is the solution of a Mach 25 flow over a hyperbolic cone. This 

problem was solved earlier by a single domain spectral method.9 The results are compared to a finite difference 

Thin Layer Navier-Stokes calculation and to the single domain solution. 

The Blunt Body Problem 

In this paper we solve for viscous supersonic flow about a blunt nose cone at zero angle of attack. Fig. 

1 shows a diagram of the situation. Spectral approximations of this problem using single domains have been 

performed by Kopriva9 and Yasuhara, Nakamura and Wang10. Because of the symmetry along the centerline 

of the body, we need to solve only the upper half of the full flow problem. For high Mach and Reynolds 

numbers, the bow shock can be viewed as a discontinuity.7 By fitting the shock as a boundary to the flow, then, 

we consider the solution only in the shock-layer. 



Fig. 1 Diagram of the blunt body geometry. The gridded area represents the computation 
region subdivided into multiple subdomains 

We approximate the compressible Navier-Stokes equations in the non-conservative form 

p,+upx +vpy+pux +pvy+^- = 0 

Px    ^Mref   x U. + UU„+VU ,+-*- = — T* 
t      x      y    p        pRe 

Py    JrMref   y 

p, + upx+vpy + yp\ux + vy+-^- 

PrRe Re 

(1) 
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T* = if 
dx 
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^ = ^(4ux-2vy)+ß(uy + vx)
2
+^(4Vy-2ux)+ 

4rf 
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(2b) 

The parameter £ = 1 for axisymmetric flow and | = 0 otherwise. 

In these equations, we have scaled the dimensional pressure, density, velocity and temperature (p*, p*, 

q\ r*)by 

P=P*IPref 

P = P*lpref 

q = (.u,v) = q*/JprefIpref (3a) 



T=T*I\ P« 

J 

\ 

where SR is the gas constant. We scale the dimensional space and time by 

x = x*/L (3b) 

t = Jprtf/prtft*/L, 

where L represents the length scale. For the blunt body problems computed here, we choosepref and Prefto be 

the free stream values and L to be the nose radius. 

The temperature is computed by the perfect gas equation of state, which becomes 

T = plp (4) 

under the scaling (3). The dimensionless variables in (1) are the standard Reynolds Number (Re), which is 

scaled to the characteristic length, the Prandtl Number (Pr) and the Mach Number (Af). 

To compute the viscosity coefficient, we use the Sutherland law 

li*     1 + 198.6 /r 

H„f     T+19S.6/T« W 

where Tref is measured in °R. We assume that the Prandtl number is constant, so the same formula is used to 

compute the dimensionless heat conductivity, K. 

The Multidomain Spectral Method 

The multidomain method that we use is presented in Kopriva^. As before, we consider non- 

overlapping and "conforming" approximations only. By conforming we mean that subdomains intersect only 

along a side or at a point, and that grid lines must be continuous between subdomains. However, in this paper, 

the geometry is allowed to change with time (because of the moving shock) and axisymmetric geometry is 

considered. The moving grid requires the interface conditions to change at each time step. 

The domain decomposition for the blunt body problem is performed as described in Kopriva4»5. We 

subdivide the region between the shock and the body into multiple non-overlapping subdomains, G* which 

collectively cover the region between the shock and the body. (See Fig. 1) Each subdomain is bounded by four 

curves.  In the direction normal to the body, r, the bounds are r^n(.s,r) and r^isj).  Time dependent 

subdomain boundary positions are included to allow the shock boundary to move with time. For convenience 



only, we require the subdomains to be bounded in the body tangential direction, s, by straight lines normal to the 

body surface. 

Given the boundary curves on a subdomain, a mapping from (r,s,t) <-> (X,Y,T) is used: 

X' = C(5,r)-C(s,o 

Yk =  !~&*k (6) 

T = t 

For each subdomain the (6) transformation causes the equations (1) to be rewritten as 

uz+A, = vu 

In (7), the advective terms are 

Ap = Upx + VpY +pux +pvY + ^- 

Au = Uux + VuY + -{XxPx + YxpY) 

Av = Uvx + VvY+±(XyPx + YypY) 

\ = Upx + VpY + yp{ Xjix + yxUy + Xyvx + YyvY + ^LJ 

where 
U = X, + uXx+vXy 

V = uYx+vYy 

For convenience, we have left off the superscripts that denote the subdomain. The viscous terms are 

(7) 

(8) 



Here, the Jacobian, J, is 

J = xxyy — xyyx 

The viscous fluxes in the mapped coordinate are defined to be 

K=yrF,-xYG, 

G,=-yxF1 + xxG, 

forq =«,v, or/?,and 

Fu=n(4(Xxux + YxUr)-2(XyVx + Yyvy))l3-^0- 

GU = FV= p(xxvx + Yxvy + Xyux + Yyuy) 

Gv=ti(4{XxVx + Y,Vy)-2(Xyux + Yyur))/3-^ 

Fp = *{XJx + yjy) 

Gp = K(XyTx + YyTy) 

(10) 

(11) 

Finally, 

^ U.(XxUX+YxUy) I    , . x 
<&=MV  , ^     >r>(4(xxux + Yxur)-2vy) 

+fl(Xyux + YyuY + Xxvx + YxVy)i 

n(Xy\x + Yyvy), . ,     , , 
+ MV ,x     y r,{ixyvx + YyVy)-2(Xxux + y>y)) 

4/« 

(12) 

We do not multiply through by the Jacobian of the transformation to create new dependent variables, since J 

can be discontinuous across interfaces between subdomains. 

On each subdomain, G*, we place a grid of points 

(i ( /-^i/' / i_ \Y\ 

™-Kk-<$W<$Vr3&% (13) 

and assign gridpoint values of the solution unknowns, e.g. p*;-, etc. Derivatives of a solution variable, q (= u,v, 

or/?), are then approximated from the grid point values, qij, by 



(14) 

;=o 

where dt ■ is the Chebyshev derivative matrix as written in Ref. 1, pg. 69. We use matrix multiplication rather 

than FFT's to compute the derivative approximation. FFT's are more efficient for large numbers of points. 

However, the number of points used here is usually chosen to be fewer than 32, which is around the break-even 

number of points where the FFT's become faster. 

The derivative approximations (14) are substituted into eqns. (8) - (12) to give a system of ordinary 

differential equations, which we denote as 

£~W (15a) 

and, for q = each of p, u, or v, 

dt       v    ''■>   v    ''•' 
(15b) 

These equations are integrated in time with a second order Runge-Kutta rule. 

At interfaces between the subdomains, conditions are applied to allow waves to propagate through 

them, while weakly enforcing continuity of the viscous flux. To describe the interface method, we consider two 

subdomains as shown in Fig. 2, one on the left (L) and the other on the right (R) of the interface. 

Interface 



Fig. 2. Diagram of a two subdomain decomposition 

At each interface point, we replace the spatial derivatives in (7) by their discrete Chebyshev 

approximations, (14). Two equations for each grid point on the interface are generated, depending on whether 

derivatives are computed from the left or from the right. For the density, the equation is purely advective, and 

we write 

dt W&J 
(16a) 

^I=-(A)R 

dt        WOJ 

For q = each of p, u, v, the equations on either side of the interface are written so that the viscosity is 

approximated by a weighted average of the viscous terms computed on either side of the interface.   The 

continuity required of the viscous flux is enforced weakly by a penalty proportional to the jump in the flux: 

, (16b) 

The weights, a, ß, 8 depend on the relative sizes of the subdomains, and on the numbers of points in the 

subdomains: 

 •V.;tV 
'      Jl   WL   + T* w* JNLjWNl + J0JW0 

J*w* J0.jw0 a •'0,j"0  

' ~ JL   wL + JR wR ' (1?) JNLJWNi + J0JW0 

5 = 1 
i      iL   Y,L  -1- T" "■* 

1 , 1 The quantities,   w0* -   .        —^, w^ =   .        —r-, are the Clenshaw-Curtis quadrature weights defined 

on the interval [0,1]. Thus, the coefficient of the penalty term grows as 0(N2), and in the limit as N ->», (16b) 

enforces continuity of the flux. To update the solutions, the equations (16) are integrated with a second order 

Runge-Kutta rule. 



An approximation similar to (16) can be written for corner points found at the intersection of four 

subdomatns8. At such points, the weighted average is taken over the four values of the diffusion terms, and 

penalties are applied for the jumps in the diffusive fluxes across each face. 

The results of the integration in time are preliminary values of the solutions, p, p, ü, v on either side 

of the interface. The preliminary values have used one sided, but not upwind, approximations for the advective 

terms at the interface points. Thus, these solutions must be corrected to account for wave propagation across the 

interface. From ü,v, preliminary values of the normal and tangential velocities, wx and w2, are formed. The 

preliminary values are then corrected to have the proper advective domain of dependence in the manner 

described in Ref. 3. For instance, if the flow is subsonic and from left to right across the interface, the choice 

of four ^characteristics of the hyperbolic portion of the equations leads to the corrected interface values 

(18) 

The superscript n refers to the linearization to the previous time level. The velocities u and v can then be 

computed from the corrected normal and tangential velocities, Wj and w^ 

The boundary conditions and their approximations are described in detail in Ref. 9. We will only 

review the basic ideas here. To compute the wall pressure, we use a compatibility equation that relates the 

pressure and the normal velocity along the inviscid characteristic direction. Thus, the pressure is required to 

satisfy a combination of both the energy and momentum equations at the body surface.   If the surface is 

adiabatic, this equation uses the normal temperature gradient set equal to zero when the second derivative is 

computed. The density is computed from the pressure and the temperature either from the equation of state, for 

an isothermal surface, or, for an adiabatic surface, by a spectral extrapolation that enforces the zero normal 

temperature gradient. 



The shock boundary is treated as a discontinuity by shock fitting since at high Mach and Reynolds 

numbers, the shock can be considered a sharp discontinuity. The shock-fitting procedure is described in detail in 

Ref. 4 for the inviscid case. The sharp shock assumption implies that the viscous terms are negligible near the 

shock, so we ignore them in the calculation of the downstream pressure. 

At the outflow boundary, we impose the viscous conditions by setting the normal viscous fluxes to be 

zero when the second derivatives are computed. Since the streamwise flux is small in high Reynolds number 

flow, this has little effect on the solution. In the subsonic portion of the boundary layer, we also specify the 

pressure to be a fixed value, and typically use the inviscid pressure. That pressure can be obtained from a 

Newtonian flow assumption, which is reasonably accurate for hypersonic flows. It can also be obtained from 

the solution of the inviscid equations, which we use to start the viscous computation. 

Unlike the solutions presented in Ref. 10, no artificial viscosity or spectral filtering are used with this 

approximation. Filtering of the solution either directly or by the addition of artificial viscous terms is 

undesirable for three reasons. First, the overall accuracy of the approximation is decreased, since the number of 

accurate frequencies is reduced. Second, high frequency information is altered. Finally artificial viscous effects 

can be introduced in the solution. In the absence of shocks or other discontinuities in the computed region, 

which we avoid here by shock fitting, the need for explicit filtering of smooth solutions often indicates the use 

of poor boundary procedures that introduce high frequency errors into the solution. These errors destroy both 

the solution accuracy and, in steady-state problems, the convergence rate. 

10 



Solutions 

Five problems are solved using the method described above. A summary of the flow parameters is 

shown below in Table I. The problems include both two-dimensional and axisymmetric flows at a range of 

Reynolds and Mach Numbers. The solutions for problems I-IV are compared to experimental data. The last 

19 problem compares the computed results with a finite difference solution1-'. 

Table I. Parameters for the Flow Test Cases. 

Case Geometry Moo Re Too T-^IToo Purpose 

I Sphere 10.6 8.33xl04 85.21R Adiab. Compute CD 

II Cylinder 5.73 2050 71.37R 71.37 Heat Transfer 

III 15° Sphere/Cone 10.6 8.33xl04 85.21R Adiab. cp 

IV 15° Sphere/Cone 10.6 1.65xl05 85.21 R 6.22 Heat Transfer 

V 5° Hyperboloid 25 13,034 486 R 25 
Compare with Thin Layer Solutioi 

Case I. 

The first problem that we solve is the M = 10.6 flow over a sphere at Reynolds number 83,000 based 

on nose radius, using a grid with eight subdomains. Fig. 3 shows the computed contours of the pressure, Mach 

number and temperature along with the grid used. The narrow strip of subdomains along the surface of the 

sphere was chosen to better resolve the boundary layer. A coarse grid is all that is needed to resolve the 

essentially inviscid flow outside of the boundary layer. Convergence behavior of the maximum residual over all 

flow variables, plotted in Fig. 4, shows that steady-state is obtained in double precision (64 bit) arithmetic. 

The solution contours are smooth and pass continuously through the interfaces. Normal direction 

profiles for the pressure, velocity and temperature and their derivatives are shown in Fig. 5, at s = 0.78, 

approximately halfway along the surface of the sphere. 

11 



Pressure 

Fig. 3. Solution contours and grid for Case I. 
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Fig. 4. Convergence of the residual for Case I. 

Finally, Fig. 6 plots the pressure coefficient 

p~  y       , \vJAl 

along the surface of the sphere measured as horizontal distance from the leading edge (See Fig. 1). The result is 

compared to the inviscid solution computed in Ref. 5, and to the experimental data of Cleary13. The viscous 

computation clearly approximates better the data than the inviscid computation. 

13 
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Fig. 5 Solution and derivative profiles at s = 0.78 for Case I. 
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Fig. 6 Pressure coefficient for Case I as a function of horizontal distance from the 
leading edge. 

Case II. 

For the second problem, the heat transfer over a cylinder placed in a M = 5.73 free stream was 

computed, again using eight subdomains. This problem was also solved using a single domain in Ref 9. Fig. 7 

shows the contours of the pressure, Mach number and the temperature along with the grid. As before, the 

solutions are smooth through the interfaces. The heat transfer along the surface of the cylinder is shown in Fig. 

8. The results are compared to the experiments of Tiewfik and Geidt14 and to the finite difference results of 

Gnoffo15. Smoothness of the solution is implied by the continuity of the normal derivative of the temperature 

across the interfaces. 
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Fig. 7 Solution contours and grid for Case II. 
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Fig. 8. Heat transfer along the cylinder surface for Case II. 

Case III. 

A more complex situation is shown in Fig. 9, which depicts the Mach 10.6 flow over a spherically 

blunted 15° half-angle cone. The solution contours in Fig. 9 show both the growth of the boundary layer along 

the cone surface and the shrinking of the entropy layer generated by the shock. The solution was computed on a 

grid of 14 subdomains. Fig. 10 shows a comparison of the pressure coefficient along the surface of the cone to 

the inviscid calculation^ and to the experimental results^. Marked by arrows on Fig. 10 are the positions of 

the subdomain interfaces. 
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Fig. 9 Solution contours and grid for Case III. 
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Fig. 10 Pressure coefficient along body surface for Case III. 

Case IV. 

Case IV is similar to Case III except that the temperature is kept fixed along the surface of the cone. 

Fig. 11 shows the heat flux normalized to the value of the nose. The computed solution is compared to the 

experimental results". 
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Fig. 11. Heat flux for Case IV. 
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CaseV 

As a final example, we make more detailed comparisons of the results of a M = 25 flow over a 5° 

hyperbolic cone to those of the shock-fitted finite difference code of Ref. 12. The finite difference calculation 

used 50 points in each direction. Since the ideal gas law, (4), is used, the calculation is meant only for a 

comparison of the numerical results. This calculation used eight subdomains. Subdomains along the body used 

13 points in the normal direction, while those along the shock used seven. 

The calculation presented here required 140,000 time steps (starting with the inviscid solution) for the 

density to reduce the maximum residual in all flow variables 12 orders of magnitude. (See Fig. 12) At 0.285 sec 

per time step, this means that the calculation required approximately 11 hrs of CPU time on an IBM RS/6000 

320H. For comparison purposes, this superscalar machine runs at approximately 4-5 megaflops. 

0 
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-8 
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n/1000 

Fig. 12. Convergence of the maximum residual for Case V. 
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We will first compare the shock position and the wall values of the pressure coefficient, normalized 

heat transfer and skin friction as a function of the distance along the cone. We will also compare the profiles of 

the flow quantities in the direction normal to the cone surface at four stations along the length of the cone. We 

begin by comparing the shock position, as shown in Fig. 13. Plotted is the normal distance of the shock from 

the body as a function of arc length along the body. Also compared to the multidomain solution is a single 

domain solution^ computed on a 20x20 grid so that the number of points in the normal direction is the same. 
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Fig. 13 Shock standoff distance comparing multidomain spectral, 
single domain spectral and finite difference solutions for Case V. 

Fig. 14 compares the pressure coefficient, the heat flux Q, and the skin friction along the body surface 

as a function of the distance from the nose. 

Variations of the pressure, temperature and velocity in the direction normal to the body surface are 

compared at four stations along the body in Fig. 15. The four stations correspond to the symmetry line and 

three interfaces that intersect the body. In all cases, we see excellent agreement between the spectral solution 

and the finite difference solution, and smooth variations through the interfaces. 
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Fig. 14 Body surface quantities for Case V. 
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Fig. 15. Normal variation of flow quantities at four stations along the body for Case V. 
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Conclusions 

We have used a multidomain spectral collocation method to solve the compressible Navier-Stokes 

equations for two-dimensional and axisymmetric supersonic flows over blunt bodies. A main advantage of the 

method over a single domain method is the ability to distribute easily both subdomain boundary locations and 

the number of points in each subdomain. Thus, features such as boundary layers can be easily resolved. 

At interfaces between subdomains, the advection terms are treated with the characteristic correction 

method used in Ref. 3 for the in viscid Euler equations. In this way, waves propagate through the interfaces in 

much the same way as they would for an inviscid flow. The diffusion terms are treated with a penalty method 

The penalty weakly enforces the continuity of the viscous flux. 

The method was applied to five problems. The computations show that the method is stable and that it 

converged in all cases to a smooth steady-state solution without the need for artificial viscosity or filtering. The 

results were compared to experimental data, to a finite difference solution, and to a single domain spectral 

method. 

Spectral methods are a high resolution methods and for smooth enough solutions give exponential 

order accuracy. Phase and dissipation errors are exponentially small. Along with the high accuracy, however, is 

the fact that the pointwise work is significantly higher than that required by low order finite difference methods. 

This means that the computations are relatively expensive. Hanley^ has presented evidence for one space 

dimension that if high enough accuracy is required, a spectral method can be as much as a factor of seven more 

efficient than a second order MacCormack scheme. Nevertheless, there is still a serious need for research on 

methods to accelerate the convergence rate of spectral methods. At this time, we consider the method described 

here to be appropriate for nose solutions. For longer bodies, the nose solution could be used as a starting 

solution for a marching code, since the approximation is defined by its Chebyshev interpolant even between 

grid points. 
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